Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(16)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37629099

RESUMEN

An oil palm (Elaeis guineensis Jacq.) bud rod disorder of unknown etiology, named Fatal Yellowing (FY) disease, is regarded as one of the top constraints with respect to the growth of the palm oil industry in Brazil. FY etiology has been a challenge embraced by several research groups in plant pathology throughout the last 50 years in Brazil, with no success in completing Koch's postulates. Most recently, the hypothesis of having an abiotic stressor as the initial cause of FY has gained ground, and oxygen deficiency (hypoxia) damaging the root system has become a candidate for stress. Here, a comprehensive, large-scale, single- and multi-omics integration analysis of the metabolome and transcriptome profiles on the leaves of oil palm plants contrasting in terms of FY symptomatology-asymptomatic and symptomatic-and collected in two distinct seasons-dry and rainy-is reported. The changes observed in the physicochemical attributes of the soil and the chemical attributes and metabolome profiles of the leaves did not allow the discrimination of plants which were asymptomatic or symptomatic for this disease, not even in the rainy season, when the soil became waterlogged. However, the multi-omics integration analysis of enzymes and metabolites differentially expressed in asymptomatic and/or symptomatic plants in the rainy season compared to the dry season allowed the identification of the metabolic pathways most affected by the changes in the environment, opening an opportunity for additional characterization of the role of hypoxia in FY symptom intensification. Finally, the initial analysis of a set of 56 proteins/genes differentially expressed in symptomatic plants compared to the asymptomatic ones, independent of the season, has presented pieces of evidence suggesting that breaks in the non-host resistance to non-adapted pathogens and the basal immunity to adapted pathogens, caused by the anaerobic conditions experienced by the plants, might be linked to the onset of this disease. This set of genes might offer the opportunity to develop biomarkers for selecting oil palm plants resistant to this disease and to help pave the way to employing strategies to keep the safety barriers raised and strong.


Asunto(s)
Arecaceae , Olea , Arecaceae/genética , Brasil , Hipoxia , Industrias , Metaboloma
2.
Phenomics ; 3(1): 1-21, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36947413

RESUMEN

Soil salinity is among the abiotic stressors that threaten agriculture the most, and purslane (Portulaca oleracea L.) is a dicot species adapted to inland salt desert and saline habitats that hyper accumulates salt and has high phytoremediation potential. Many researchers consider purslane a suitable model species to study the mechanisms of plant tolerance to drought and salt stresses. Here, a robust salinity stress protocol was developed and used to characterize the morphophysiological responses of young purslane plants to salinity stress; then, leaf tissue underwent characterization by distinct omics platforms to gain further insights into its response to very high salinity stress. The salinity stress protocol did generate different levels of stress by gradients of electrical conductivity at field capacity and water potential in the saturation extract of the substrate, and the morphological parameters indicated three distinct stress levels. As expected from a halophyte species, these plants remained alive under very high levels of salinity stress, showing salt crystal-like structures constituted mainly by Na+, Cl-, and K+ on and around closed stomata. A comprehensive and large-scale metabolome and transcriptome single and integrated analyses were then employed using leaf samples. The multi-omics integration (MOI) system analysis led to a data-set of 51 metabolic pathways with at least one enzyme and one metabolite differentially expressed due to salinity stress. These data sets (of genes and metabolites) are valuable for future studies aimed to deepen our knowledge on the mechanisms behind the high tolerance of this species to salinity stress. In conclusion, besides showing that this species applies salt exclusion already in young plants to support very high levels of salinity stress, the initial analysis of metabolites and transcripts data sets already give some insights into other salt tolerance mechanisms used by this species to support high levels of salinity stress. Supplementary Information: The online version contains supplementary material available at 10.1007/s43657-022-00061-2.

3.
Plants (Basel) ; 11(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36297811

RESUMEN

Drought and salinity are two of the most severe abiotic stresses affecting agriculture worldwide and bear some similarities regarding the responses of plants to them. The first is also known as osmotic stress and shows similarities mainly with the osmotic effect, the first phase of salinity stress. Multi-Omics Integration (MOI) offers a new opportunity for the non-trivial challenge of unraveling the mechanisms behind multigenic traits, such as drought and salinity resistance. The current study carried out a comprehensive, large-scale, single-omics analysis (SOA) and MOI studies on the leaves of young oil palm plants submitted to water deprivation. After performing SOA, 1955 DE enzymes from transcriptomics analysis, 131 DE enzymes from proteomics analysis, and 269 DE metabolites underwent MOI analysis, revealing several pathways affected by this stress, with at least one DE molecule in all three omics platforms used. Moreover, the similarities and dissimilarities in the molecular response of those plants to those two abiotic stresses underwent mapping. Cysteine and methionine metabolism (map00270) was the most affected pathway in all scenarios evaluated. The correlation analysis revealed that 91.55% of those enzymes expressed under both stresses had similar qualitative profiles, corroborating the already known fact that plant responses to drought and salinity show several similarities. At last, the results shed light on some candidate genes for engineering crop species resilient to both abiotic stresses.

4.
Plants (Basel) ; 11(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35807707

RESUMEN

Oil palm (Elaeis guineensis Jacq.) is the number one source of consumed vegetable oil nowadays. It is cultivated in areas of tropical rainforest, where it meets its natural condition of high rainfall throughout the year. The palm oil industry faces criticism due to a series of practices that was considered not environmentally sustainable, and it finds itself under pressure to adopt new and innovative procedures to reverse this negative public perception. Cultivating this oilseed crop outside the rainforest zone is only possible using artificial irrigation. Close to 30% of the world's irrigated agricultural lands also face problems due to salinity stress. Consequently, the research community must consider drought and salinity together when studying to empower breeding programs in order to develop superior genotypes adapted to those potential new areas for oil palm cultivation. Multi-Omics Integration (MOI) offers a new window of opportunity for the non-trivial challenge of unraveling the mechanisms behind multigenic traits, such as drought and salinity tolerance. The current study carried out a comprehensive, large-scale, single-omics analysis (SOA), and MOI study on the leaves of young oil palm plants submitted to very high salinity stress. Taken together, a total of 1239 proteins were positively regulated, and 1660 were negatively regulated in transcriptomics and proteomics analyses. Meanwhile, the metabolomics analysis revealed 37 metabolites that were upregulated and 92 that were downregulated. After performing SOA, 436 differentially expressed (DE) full-length transcripts, 74 DE proteins, and 19 DE metabolites underwent MOI analysis, revealing several pathways affected by this stress, with at least one DE molecule in all three omics platforms used. The Cysteine and methionine metabolism (map00270) and Glycolysis/Gluconeogenesis (map00010) pathways were the most affected ones, each one with 20 DE molecules.

5.
Sci Rep ; 11(1): 18271, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34521943

RESUMEN

The expansion of the oil palm in marginal areas can face challenges, such as water deficit, leading to an impact on palm oil production. A better understanding of the biological consequences of abiotic stresses on this crop can result from joint metabolic profiling and multivariate analysis. Metabolic profiling of leaves was performed from control and stressed plants (7 and 14 days of stress). Samples were extracted and analyzed on a UHPLC-ESI-Q-TOF-HRMS system. Acquired data were processed using XCMS Online and MetaboAnalyst for multivariate and pathway activity analysis. Metabolism was affected by drought stress through clear segregation between control and stressed groups. More importantly, metabolism changed through time, gradually from 7 to 14 days. The pathways most affected by drought stress were: starch and sucrose metabolism, glyoxylate and dicarboxylate metabolism, alanine, aspartate and glutamate metabolism, arginine and proline metabolism, and glycine, serine and threonine metabolism. The analysis of the metabolic profile were efficient to correlate and differentiate groups of oil palm plants submitted to different levels of drought stress. Putative compounds and their affected pathways can be used in future multiomics analysis.


Asunto(s)
Arecaceae/metabolismo , Hojas de la Planta/metabolismo , Arecaceae/fisiología , Cromatografía Líquida de Alta Presión , Deshidratación , Regulación de la Expresión Génica de las Plantas , Redes y Vías Metabólicas , Metabolómica , Hojas de la Planta/fisiología , Espectrometría de Masas en Tándem
6.
Methods Mol Biol ; 1859: 155-169, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30421228

RESUMEN

Mass spectrometry is a sensitive and selective analytical technique that enables detection and quantitation of low abundance compounds in a complex sample matrix. Targeted metabolomics allows for quantitative analysis of metabolites, providing kinetic information of production and consumption rates, an essential step to investigate microbial metabolism. Here, we describe a targeted metabolomics protocol for yeast samples, from sample preparation to mass spectrometry analysis, which enables the identification of metabolic fluxes after xylose consumption. Sample preparation methods were optimized for quenching of yeast metabolism followed by intracellular metabolite extraction, using cold methanol and boiling ethanol protocols. Ultrahigh performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) methods using ion pair chromatography (IPC) and hydrophilic interaction liquid chromatography (HILIC) allowed for the quantitation of 18 metabolites involved in central carbon metabolism (glycolysis, pentose phosphate pathway, and tricarboxylic acid cycle). The protocol here described was successfully applied to quantify metabolites in Scheffersomyces stipitis, Spathaspora passalidarum, Spathaspora arborariae, and Candida tenuis samples after xylose consumption.


Asunto(s)
Metabolómica/métodos , Espectrometría de Masas en Tándem/métodos , Xilosa/metabolismo , Levaduras/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Fermentación , Metabolómica/instrumentación , Espectrometría de Masas en Tándem/instrumentación
7.
J Am Soc Mass Spectrom ; 28(12): 2646-2657, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28879550

RESUMEN

Xylose fermentation is a bottleneck in second-generation ethanol production. As such, a comprehensive understanding of xylose metabolism in naturally xylose-fermenting yeasts is essential for prospection and construction of recombinant yeast strains. The objective of the current study was to establish a reliable metabolomics protocol for quantification of key metabolites of xylose catabolism pathways in yeast, and to apply this protocol to Spathaspora arborariae. Ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) was used to quantify metabolites, and afterwards, sample preparation was optimized to examine yeast intracellular metabolites. S. arborariae was cultivated using xylose as a carbon source under aerobic and oxygen-limited conditions. Ion pair chromatography (IPC) and hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) were shown to efficiently quantify 14 and 5 metabolites, respectively, in a more rapid chromatographic protocol than previously described. Thirteen and eleven metabolites were quantified in S. arborariae under aerobic and oxygen-limited conditions, respectively. This targeted metabolomics protocol is shown here to quantify a total of 19 metabolites, including sugars, phosphates, coenzymes, monosaccharides, and alcohols, from xylose catabolism pathways (glycolysis, pentose phosphate pathway, and tricarboxylic acid cycle) in yeast. Furthermore, to our knowledge, this is the first time that intracellular metabolites have been quantified in S. arborariae after xylose consumption. The results indicated that fine control of oxygen levels during fermentation is necessary to optimize ethanol production by S. arborariae. The protocol presented here may be applied to other yeast species and could support yeast genetic engineering to improve second generation ethanol production. Graphical Abstract ᅟ.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Metabolómica/métodos , Saccharomyces/metabolismo , Espectrometría de Masas en Tándem/métodos , Xilosa/metabolismo , Reactores Biológicos , Fermentación , Redes y Vías Metabólicas , Metaboloma
8.
Biomed Res Int ; 2017: 6123408, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28620618

RESUMEN

Jatropha curcas cake, a by-product of biodiesel production, is rich in protein and has potential to be used in livestock feed; however, the presence of antinutritional factors and phorbol esters limits its use. Thus, this study investigated toxicological and reproductive effects in male Wistar rats after subchronic exposure to J. curcas cake subjected to detoxification procedures. Rats were divided into seven groups (n = 10) and treated for 60 days. The control group received commercial feed, while experimental groups received a diet containing 5% J. curcas cake nonhydrolyzed or hydrolyzed with 5 M NaOH. The cakes were unwashed or washed with ethanol or water and were autoclaved at 121°C for 30 minutes. Alkaline hydrolysis combined with ethanol washing decreased the phorbol ester concentration in the cake by 98%. Histopathological findings included diffuse degeneration of the liver and edema around the pulmonary vessels in the nonhydrolyzed groups. In addition, nontreated females mated with males of nonhydrolyzed unwashed group showed a decreased number of live fetuses and an increased placental weight. There were no signs of toxicity in rats given hydrolyzed cakes washed and unwashed, indicating that alkaline hydrolysis associated with heat treatment is an efficient method for detoxification of the J. curcas cake.


Asunto(s)
Alimentación Animal , Jatropha/química , Reproducción/efectos de los fármacos , Semillas/química , Álcalis/química , Animales , Biocombustibles/efectos adversos , Dieta , Etanol/química , Calor , Hidrólisis/efectos de los fármacos , Jatropha/efectos adversos , Ésteres del Forbol/efectos adversos , Ésteres del Forbol/química , Ratas , Semillas/efectos adversos
9.
Planta Med ; 75(3): 280-5, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19096997

RESUMEN

MIKANIA GLOMERATA and MIKANIA LAEVIGATA (Asteraceae) are medicinal plants popularly named 'guaco' in Brazil. The leaves of both species are used to treat respiratory diseases, with coumarin (CO) and kaurane-type diterpenes being regarded as the bioactive constituents. A new and simple RP-HPLC method was developed and validated for the simultaneous quantification of CO, O-coumaric (OC), benzoylgrandifloric (BA), cinnamoylgrandifloric (CA) and kaurenoic (KA) acids in the species. Optimal separation was achieved with an alternating gradient elution of methanol and acetonitrile and detection was carried out by DAD at three different wavelengths: 210 nm for CO, OC, KA; 230 nm for BA; and 270 nm for CA. The extracts showed good stability during 42 hours under normal laboratory conditions (temperature of 23 +/- 2 degrees C). The standard curves were linear over the range 0.5 - 5.0 microg (CO), 0.25 - 4.0 microg (OC), 1.0 - 8.0 microg (BA), 0.5 - 3.0 microg (CA) and 0.8 - 12.0 microg (KA), with R(2) > 0.999 for all compounds. The method showed good precision for intra-day (RSD < 4.6 %) and inter-day assays (RSD < 4.4 %). The recovery was between 99.9 and 105.3 %, except for CO and OC in M. glomerata (73.2 - 91.6 % and 86.3 - 117.4 %, respectively). The limits of quantification and detection were in the range of 0.025 - 0.800 microg and 0.007 - 0.240 microg. The method was tested for new and old columns, temperature variation (26 and 28 degrees C) and by different operators in the same laboratory. The method was successfully applied to samples of both species.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Cinamatos/análisis , Cumarinas/análisis , Diterpenos de Tipo Kaurano/análisis , Mikania/química , Extractos Vegetales/química , Diterpenos/análisis , Hojas de la Planta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...